NEW LOAD BALANCING CRITERION FOR PARALLEL
INTERVAL GLOBAL OPTIMIZATION ALGORITHMS. *

LEOCADIO G. CASADO and INMACULADA GARCIA

Department of Computer Architecture and Electronics,

Almeria University, 04120, Almeria, Spain.

ABSTRACT

In this paper we present evaluations of mapping and
load balancing methods for a type of irregular data
parallel applications on distributed memory multipro-
cessors. Problems we deal with are nonuniform and
dynamic and they come from the field of global opti-
mization. They belong to the class of interval branch
and bound methods, so their parallel implementations
are not straight forward and seem to require the use of
dynamic load balance methods. Comparison between
a static and a dynamic mapping strategy for this gen-
eral problems are carried out.

keywords: Parallel and Distributed Processing, Load
Balancing, Global Optimization, Branch-and-Bound.

1 INTRODUCTION

A wide variety of problems coming from several dif-
ferent scientific and engineering fields consists in de-
termining the optimum values of a set of parameters
which are responsible for the stability or effectiveness
of a system. This kind of problems can be formulated
as a Global Optimization Problem (GOP); i.e. as that
of minimizing a continuous function f. The problem
is stated as follows. Given a continuous and non-linear
function f: S C R™ — R, to find the set of minimizer
points z* € S such that f(z*) < f(z) Vz € S.

During the last few years several stochastic and
deterministic GOP methods has been proposed [10,
8, 9]. This paper will only deal with a deterministic
method which belongs to the well known Branch and
Bound (B&B) methods. One of the main advantages
of using Branch and Bound methods consists in their
reliability in obtaining a full knowledge of the loca-
tion of all the global minima of a function f. They
are frequently used as an intelligent search method in
the context of Global Optimization (GO). The main

drawback of B&B methods is their higher computa-
tional cost compared to stochastic methods. Neverthe-
less B&B methods exhibit a high degree of parallelism
which can be exploited for improving the efficiency
of the search procedure which inherently appears in
the GO problems. The computational power needed
to solve GO problems using B&B methods and their
high degree of potential parallelism make them suitable
candidates to be solved in a multiprocessing environ-
ment. Nevertheless Branch and Bound algorithms are
irregular and have an almost unpredictable behavior
and data dependencies; i.e. the type of problems we
are going to deal with are irregular and dynamic. A
wide set of parallel B&B models for shared and dis-
tributed memory multiprocessing systems have been
proposed [1, 2, 3, 6, 7]. Herein, only the distributed
solution is considered.

This work investigates the improvements obtained
by a new parameter, called pf*, which gives a valu-
able estimation of how close or far is an interval from
the region of attraction to a local or global minimizer
point [4, 5]. Taking into account that in B&B most
of the computational work is made around the region
of attraction to a minimizer point, this parameter pf*
can be used as a predictor of the computational cost
of a particular subproblem (very useful for implement-
ing a good load balance) as well as an estimator of the
probability of a subinterval for containing a minimizer
point of the function f.

This work is organized as follows. In section 2
a short description of the Interval Branch and Bound
algorithm and a general computational model for this
kind of problems is made. This section is also devoted
to describe the three parallel models (static, semi-static
and dynamic) which have been implemented and eval-
uated. Section 3 shows results of the performance eval-
uations of these proposals.

*This work was supported by the Ministry of Education of Spain (CICYT TIC96-1125-C03-03) and by the Consejeria de Educacién

de la Junta de Andalucia (07/FSC/MDM).

2 B&B ALGORITHM AND
PARALLEL MODELS

In this work a modified version [4, 5] of the Moore-
Skelboe B&B algorithm [12] without additional accel-
erating devices, (with the exception of the cut-off test)
is used. This algorithm uses Interval Arithmetic as
a tool for defining an inclusion function F which en-
closes the range of f over an interval X (also called
box); ie. f(z) € [F(X),F(X)]; V& € X. This
B&B algorithm can be characterized by the following
five rules: Termination rule: The algorithm ends
when the width (w(X) = X — X) of all the boxes
is smaller than an established accuracy parameter e.
The Branching rule consists in a uniform bisection
in all the n dimensions of the problem. Bounding
rule is given by the lower bound of the interval range
of a box (F(X)). The Elimination rule determines
that an interval does not contain a feasible solution if
F(X) > f, where f is the current smaller value of f
(f is evaluated at the center of the subintervals). Two
models for the Selection rule have been applied: A
standard Best-First search, based on the value of the
lower bound F(X), and a hybrid model which uses a
Best-First search based on the value of pf*(X) x w(X),
as an estimator of the work load of the box X, fol-
lowed by a Depth-First search based on the value of
pf*(X) = (f — E(X))/(F(X) = E(X)) € [0,1]. This
selection rule can be seen as a guided local search that
allows to obtain a fast estimation of an optimal solu-
tion (f ~ f* =min f(z): z € 9).

From a computational point of view this algo-
rithm can be modeled as a 2"-ary tree, where nodes
and leaves represent all the subintervals built and eval-
uated from S (root node). At any stage of the algo-
rithm, a leaf is a candidate either to be rejected or to
be subdivided in 2" subintervals. So, the computa-
tional cost of the algorithm and the shape of the final
tree strongly depend on the specific function f (data
dependent).

In this work three parallel models (static, semi-
static and dynamic) of the B&B algorithm on a paral-
lel computer with N P processors (PEs) are presented.
These parallel models use a direct initialization, where
each PE directly computes its own local root nodes.
These nodes are taken from a certain depth of the
search tree, such that the number of nodes at this
depth is higher than the number of PEs.

In the static model a blind and decentralized map-
ping model is used. Each processor applies a B&B
algorithm on its own initial subintervals, using a stan-
dard Best-First selection rule, and only information
about the optimal solution is exchanged between pro-
cessors. This static model has been implemented in
order to highlight the level of imbalance of the prob-

lems used in this work.

The semi-static mapping uses a centralized model
and consists in two stages. The first stage is intended
to find a good estimation of the optimal solution. It
starts as the static one and finishes after the above
mentioned hybrid selection rule (local search) is ap-
plied over the initial boxes. Only when a local search
finishes the improved f is broadcasted and the received
messages are used to update the state of the local tree
by the elimination rule. The remaining boxes in each
PE are sent to the central processor. The central pro-
cessor makes a estimation of the total work load as
WLy = 3, pf*(X;) x w(X;), VX; in the work tree
and it distributes a set of boxes with a W L;/N P load
among the PEs. At the second stage all the proces-
sors apply a B&B algorithm using the hybrid selection
rule on the set of subintervals received from the central
processor. The algorithm ends when all the processors
send to the central one their final tree. In this model
only once redistribution of the workload is made.

The dynamic model starts with a direct initializa-
tion. As in the semi-static model, it always applies a
hybrid selection rule. If a PE run out of boxes, it asks
to the central processor for boxes. If the central pro-
cessor has no boxes, it asks to the rest of PEs for boxes.
A PE will return the second, fourth, ... boxes saved
in its own priority tree (ordered by pf*(X) x w(X))
to the central processor. When the central processor
receives boxes it sends back to the waiting PEs a load
approximately equal to WL;/(NP — 1). This value
remains constant until the central processor asks for
more boxes. The program finishes when both the cen-
tral processor and all PEs have no boxes in their work
tree.

3 RESULTS AND CONCLUSIONS

The static, semi-static and dynamic models for the
B&B algorithm have been implemented using PVM
and run on a PC multiprocessor based system with up
to 8 processing elements. Performance evaluations for
the parallel B&B algorithm are shown in table 1. A set
of four test functions, Goldstein-Price (GP), Hartman-
3 (H3), Levy-3 (L3) and Six-Hump-Camel-Back (C),
standard in the literature of GO, have been used in
this work. Numerical results of the CPU time, speed-
up, number of interval and real evaluations, as well
as imbalance (IBL) measurements are shown. All val-
ues shown in table 1 are the average of numerical re-
sults in five executions. The workload imbalance is de-
fined as IBL = (Iyaz — lavw)/Iaw € [0, NP — 1], where
I; is the number of interval function evaluation done
by the processor element PE;, I, = max{l;} and
I,=),I;i/NP, 1<i<NP.

Static Semi-Static Dynamic
| NP | 1 3 5 7 1 3 5 7 1 3 5 7
CPU Time (sec.)
GP 130.20 70.80 90.39 38.26 106.52 38.64 23.17 16.60 105.45 35.78 21.76 15.07
H3 961.21 955.42 955.34 948.34 877.77 330.50 234.74 235.31 882.94 296.60 177.58 126.60
L3 401.06 223.19 129.85 90.91 398.91 139.00 114.23 71.70 398.96 133.62 80.28 57.40
C 20.53 9.77 9.76 9.70 16.83 8.27 4.98 3.6 16.92 5.83 3.61 2.51
Speed-Up
GP 1.00 1.84 1.44 3.40 1.00 2.75 4.60 6.42 1.00 2.95 4.85 6.99
H3 1.00 1.01 1.01 1.01 1.00 2.66 3.74 3.73 1.00 2.98 4.97 6.97
L3 1.00 1.80 3.01 4.41 1.00 2.87 3.49 5.56 1.00 2.99 4.97 6.95
C 1.00 2.10 2.10 2.12 1.00 2.04 3.38 4.68 1.00 2.90 4.69 6.74
IBL
GP 0.00 0.61 2.47 1.10 0.00 0.05-0.08 0.01-0.05 0.01-0.04 0.00 0.01 0.02 0.02
H3 0.00 1.98 3.96 5.94 0.00 0.04-0.13 0.06-0.34 0.15-0.88 0.00 0.01 0.01 0.01
L3 0.00 0.65 0.62 0.55 0.00 0.18-0.04 0.18-0.38 0.11-0.19 0.00 0.03 0.03 0.03
C 0.00 0.42 1.34 2.15 0.00 0.10-0.45 0.04-0.40 0.03-0.40 0.00 0.01 0.03 0.04
Interval Function Evaluations
GP | 169209 169310 169264 169293 | 169213 169354 172899 172902 | 169213 169378 169363 165959
H3 | 283753 284117 284322 284382 | 283753 284024 284073 284144 | 283753 283954 283931 284162
L3 32765 32764 32760 32760 32765 32808 35443 35308 32765 32844 32964 33030
C 33413 33420 33674 34774 33473 34048 37226 37364 33449 33510 33692 32416
Real Function Evaluations
GP 42302 42326 42312 42319 42603 42322 42200 42201 42303 42343 42337 41485
H3 35469 35514 35539 35546 35469 35439 35445 35454 35469 35493 35490 35519
L3 8191 8190 8186 8186 8191 8186 7836 7803 8191 8210 8237 8253
C 8353 8354 8414 8689 8368 8496 8282 8317 8362 8376 8419 8100

Table 1: Numerical results. TBL for the semi-static version are those obtained at the first and second stage of the algorithm.

In these implementations we have been working
with two main drawbacks: a set of computationally un-
expensive functions (the set of test functions has been
implemented in such way that their computational cost
is higher than 1072 sec., but smaller than 1072 sec.)
and the slowness of the communications of the dis-
tributed system (a network of PCs).

Our results show that the number of real and in-
terval function evaluations for parallel versions of the
algorithm does not increase significatively compared to
the sequential version. Only in the semi-static version,
a slight increasing of the number of function evalua-
tions has been reported. A global evaluation of the
results for speed-up and IBL for the three parallel ver-
sions show that the semi-static version improves the
workload balance as well as the speed-up, but the dy-
namic version obtains better results, with values of IBL
10 times smaller than the semi-static ones.

References

[1] S. Berner, Ein paralleles Verfahren zur veri-
fizierten globalen Optimierung (in German), PhD
Thesis, 1995, University of Wuppertal, Germany.

[2] O. Caprani, B. Godthaad and K, Madsen, Use of
a Real-Valued Local Minimum in Parallel Inter-
val Global Optimization, Interval Computation,
2,1993, 71 82.

[3] J. Erikson and P. Lindstrém, A Parallel Interval
Method Implementation for Global Optimization

using Dynamic Load Balancing, Reliable Comput-
ing, 1, 1995, 77 91.

[4] L. G. Casado, 1. Garcia and T. Csendes, Adap-
tive Multisection in Interval Methods for Global
Optimization, 1996.

[5] L. G. Casado, I. Garcia and T. Csendes, New
Heuristic Rejection Criterion in Interval Global
Optimization Algorithms, 1997.

[6] T. Henriksen and K. Madsen, Parallel Algorithms
for Global Optimization, Interval Computation,
3(5), 1992, 87 95.

[7] A. Leclerc, Parallel interval global optimization
and its implementation in C++4, Interval Compu-
tations, 3, 1993, 148 163.

[8] R. Horst and P. M. Pardalos, (eds.), Handbook of
Global Optimization. Kluwer, Dordrecht, 1995.

[9] A. Torn and A. Zilinskas, Global Optimization.
Springer-Verlag, Berlin, 1987.

[10] R. Horst and H. Tuy, Global Optimization. De-
terministic Approaches. Springer-Verlag, Berlin,
1996.

[11] O. Kniippel, BIAS basic interval arithmetic
subroutines, Technical Report 93.3, University of
Hamburg, 1993.

[12] H. Ratschek and J. Rokne, New Computer
Methods for Global Optimization, Ellis Horwood,
Chichester, 1988.

