
NEW LOAD BALANCING CRITERION FOR PARALLELINTERVAL GLOBAL OPTIMIZATION ALGORITHMS. �LEOCADIO G. CASADO and INMACULADA GARCIADepartment of Computer Architecture and Electronics,Almer��a University, 04120, Almer��a, Spain.ABSTRACTIn this paper we present evaluations of mapping andload balancing methods for a type of irregular dataparallel applications on distributed memory multipro-cessors. Problems we deal with are nonuniform anddynamic and they come from the �eld of global opti-mization. They belong to the class of interval branchand bound methods, so their parallel implementationsare not straight forward and seem to require the use ofdynamic load balance methods. Comparison betweena static and a dynamic mapping strategy for this gen-eral problems are carried out.keywords: Parallel and Distributed Processing, LoadBalancing, Global Optimization, Branch-and-Bound.1 INTRODUCTIONA wide variety of problems coming from several dif-ferent scienti�c and engineering �elds consists in de-termining the optimum values of a set of parameterswhich are responsible for the stability or e�ectivenessof a system. This kind of problems can be formulatedas a Global Optimization Problem (GOP); i.e. as thatof minimizing a continuous function f . The problemis stated as follows. Given a continuous and non-linearfunction f : S � Rn ! R, to �nd the set of minimizerpoints x� 2 S such that f(x�) � f(x) 8x 2 S.During the last few years several stochastic anddeterministic GOP methods has been proposed [10,8, 9]. This paper will only deal with a deterministicmethod which belongs to the well known Branch andBound (B&B) methods. One of the main advantagesof using Branch and Bound methods consists in theirreliability in obtaining a full knowledge of the loca-tion of all the global minima of a function f . Theyare frequently used as an intelligent search method inthe context of Global Optimization (GO). The main

drawback of B&B methods is their higher computa-tional cost compared to stochastic methods. Neverthe-less B&B methods exhibit a high degree of parallelismwhich can be exploited for improving the e�ciencyof the search procedure which inherently appears inthe GO problems. The computational power neededto solve GO problems using B&B methods and theirhigh degree of potential parallelism make them suitablecandidates to be solved in a multiprocessing environ-ment. Nevertheless Branch and Bound algorithms areirregular and have an almost unpredictable behaviorand data dependencies; i.e. the type of problems weare going to deal with are irregular and dynamic. Awide set of parallel B&B models for shared and dis-tributed memory multiprocessing systems have beenproposed [1, 2, 3, 6, 7]. Herein, only the distributedsolution is considered.This work investigates the improvements obtainedby a new parameter, called pf�, which gives a valu-able estimation of how close or far is an interval fromthe region of attraction to a local or global minimizerpoint [4, 5]. Taking into account that in B&B mostof the computational work is made around the regionof attraction to a minimizer point, this parameter pf�can be used as a predictor of the computational costof a particular subproblem (very useful for implement-ing a good load balance) as well as an estimator of theprobability of a subinterval for containing a minimizerpoint of the function f .This work is organized as follows. In section 2a short description of the Interval Branch and Boundalgorithm and a general computational model for thiskind of problems is made. This section is also devotedto describe the three parallel models (static, semi-staticand dynamic) which have been implemented and eval-uated. Section 3 shows results of the performance eval-uations of these proposals.�This work was supported by the Ministry of Education of Spain (CICYT TIC96-1125-C03-03) and by the Consejer��a de Educaci�onde la Junta de Andaluc��a (07/FSC/MDM).



2 B&B ALGORITHM ANDPARALLEL MODELSIn this work a modi�ed version [4, 5] of the Moore-Skelboe B&B algorithm [12] without additional accel-erating devices, (with the exception of the cut-o� test)is used. This algorithm uses Interval Arithmetic asa tool for de�ning an inclusion function F which en-closes the range of f over an interval X (also calledbox); i.e. f(x) 2 [F (X); F (X)]; 8x 2 X . ThisB&B algorithm can be characterized by the following�ve rules: Termination rule: The algorithm endswhen the width (w(X) = X � X) of all the boxesis smaller than an established accuracy parameter �.The Branching rule consists in a uniform bisectionin all the n dimensions of the problem. Boundingrule is given by the lower bound of the interval rangeof a box (F (X)). The Elimination rule determinesthat an interval does not contain a feasible solution ifF (X) > ~f , where ~f is the current smaller value of f(f is evaluated at the center of the subintervals). Twomodels for the Selection rule have been applied: Astandard Best-First search, based on the value of thelower bound F (X), and a hybrid model which uses aBest-First search based on the value of pf�(X)�w(X),as an estimator of the work load of the box X , fol-lowed by a Depth-First search based on the value ofpf�(X) = ( ~f � F (X))=(F (X) � F (X)) 2 [0; 1]. Thisselection rule can be seen as a guided local search thatallows to obtain a fast estimation of an optimal solu-tion ( ~f ' f� = min f(x) : x 2 S).From a computational point of view this algo-rithm can be modeled as a 2n-ary tree, where nodesand leaves represent all the subintervals built and eval-uated from S (root node). At any stage of the algo-rithm, a leaf is a candidate either to be rejected or tobe subdivided in 2n subintervals. So, the computa-tional cost of the algorithm and the shape of the �naltree strongly depend on the speci�c function f (datadependent).In this work three parallel models (static, semi-static and dynamic) of the B&B algorithm on a paral-lel computer with NP processors (PEs) are presented.These parallel models use a direct initialization, whereeach PE directly computes its own local root nodes.These nodes are taken from a certain depth of thesearch tree, such that the number of nodes at thisdepth is higher than the number of PEs.In the static model a blind and decentralized map-ping model is used. Each processor applies a B&Balgorithm on its own initial subintervals, using a stan-dard Best-First selection rule, and only informationabout the optimal solution is exchanged between pro-cessors. This static model has been implemented inorder to highlight the level of imbalance of the prob-

lems used in this work.The semi-static mapping uses a centralized modeland consists in two stages. The �rst stage is intendedto �nd a good estimation of the optimal solution. Itstarts as the static one and �nishes after the abovementioned hybrid selection rule (local search) is ap-plied over the initial boxes. Only when a local search�nishes the improved ~f is broadcasted and the receivedmessages are used to update the state of the local treeby the elimination rule. The remaining boxes in eachPE are sent to the central processor. The central pro-cessor makes a estimation of the total work load asWLt = Pi pf�(Xi) � w(Xi); 8Xi in the work treeand it distributes a set of boxes with a WLt=NP loadamong the PEs. At the second stage all the proces-sors apply a B&B algorithm using the hybrid selectionrule on the set of subintervals received from the centralprocessor. The algorithm ends when all the processorssend to the central one their �nal tree. In this modelonly once redistribution of the workload is made.The dynamic model starts with a direct initializa-tion. As in the semi-static model, it always applies ahybrid selection rule. If a PE run out of boxes, it asksto the central processor for boxes. If the central pro-cessor has no boxes, it asks to the rest of PEs for boxes.A PE will return the second, fourth, : : : boxes savedin its own priority tree (ordered by pf�(X) � w(X))to the central processor. When the central processorreceives boxes it sends back to the waiting PEs a loadapproximately equal to WLt=(NP � 1). This valueremains constant until the central processor asks formore boxes. The program �nishes when both the cen-tral processor and all PEs have no boxes in their worktree.3 RESULTS AND CONCLUSIONSThe static, semi-static and dynamic models for theB&B algorithm have been implemented using PVMand run on a PC multiprocessor based system with upto 8 processing elements. Performance evaluations forthe parallel B&B algorithm are shown in table 1. A setof four test functions, Goldstein-Price (GP), Hartman-3 (H3), Levy-3 (L3) and Six-Hump-Camel-Back (C),standard in the literature of GO, have been used inthis work. Numerical results of the CPU time, speed-up, number of interval and real evaluations, as wellas imbalance (IBL) measurements are shown. All val-ues shown in table 1 are the average of numerical re-sults in �ve executions. The workload imbalance is de-�ned as IBL = (Imax � Iav)=Iav 2 [0; NP � 1]; whereIi is the number of interval function evaluation doneby the processor element PEi, Imax = maxfIig andIav =Pi Ii=NP; 1 � i � NP .



Static Semi-Static DynamicNP 1 3 5 7 1 3 5 7 1 3 5 7CPU Time (sec.)GP 130.20 70.80 90.39 38.26 106.52 38.64 23.17 16.60 105.45 35.78 21.76 15.07H3 961.21 955.42 955.34 948.34 877.77 330.50 234.74 235.31 882.94 296.60 177.58 126.60L3 401.06 223.19 129.85 90.91 398.91 139.00 114.23 71.70 398.96 133.62 80.28 57.40C 20.53 9.77 9.76 9.70 16.83 8.27 4.98 3.6 16.92 5.83 3.61 2.51Speed-UpGP 1.00 1.84 1.44 3.40 1.00 2.75 4.60 6.42 1.00 2.95 4.85 6.99H3 1.00 1.01 1.01 1.01 1.00 2.66 3.74 3.73 1.00 2.98 4.97 6.97L3 1.00 1.80 3.01 4.41 1.00 2.87 3.49 5.56 1.00 2.99 4.97 6.95C 1.00 2.10 2.10 2.12 1.00 2.04 3.38 4.68 1.00 2.90 4.69 6.74IBLGP 0.00 0.61 2.47 1.10 0.00 0.05-0.08 0.01-0.05 0.01-0.04 0.00 0.01 0.02 0.02H3 0.00 1.98 3.96 5.94 0.00 0.04-0.13 0.06-0.34 0.15-0.88 0.00 0.01 0.01 0.01L3 0.00 0.65 0.62 0.55 0.00 0.18-0.04 0.18-0.38 0.11-0.19 0.00 0.03 0.03 0.03C 0.00 0.42 1.34 2.15 0.00 0.10-0.45 0.04-0.40 0.03-0.40 0.00 0.01 0.03 0.04Interval Function EvaluationsGP 169209 169310 169264 169293 169213 169354 172899 172902 169213 169378 169363 165959H3 283753 284117 284322 284382 283753 284024 284073 284144 283753 283954 283931 284162L3 32765 32764 32760 32760 32765 32808 35443 35308 32765 32844 32964 33030C 33413 33420 33674 34774 33473 34048 37226 37364 33449 33510 33692 32416Real Function EvaluationsGP 42302 42326 42312 42319 42603 42322 42200 42201 42303 42343 42337 41485H3 35469 35514 35539 35546 35469 35439 35445 35454 35469 35493 35490 35519L3 8191 8190 8186 8186 8191 8186 7836 7803 8191 8210 8237 8253C 8353 8354 8414 8689 8368 8496 8282 8317 8362 8376 8419 8100Table 1: Numerical results. IBL for the semi-static version are those obtained at the �rst and second stage of the algorithm.In these implementations we have been workingwith two main drawbacks: a set of computationally un-expensive functions (the set of test functions has beenimplemented in such way that their computational costis higher than 10�3 sec., but smaller than 10�2 sec.)and the slowness of the communications of the dis-tributed system (a network of PCs).Our results show that the number of real and in-terval function evaluations for parallel versions of thealgorithm does not increase signi�catively compared tothe sequential version. Only in the semi-static version,a slight increasing of the number of function evalua-tions has been reported. A global evaluation of theresults for speed-up and IBL for the three parallel ver-sions show that the semi-static version improves theworkload balance as well as the speed-up, but the dy-namic version obtains better results, with values of IBL10 times smaller than the semi-static ones.References[1] S. Berner, Ein paralleles Verfahren zur veri-�zierten globalen Optimierung (in German), PhDThesis, 1995, University of Wuppertal, Germany.[2] O. Caprani, B. Godthaad and K, Madsen, Use ofa Real-Valued Local Minimum in Parallel Inter-val Global Optimization, Interval Computation,2, 1993, 71{82.[3] J. Erikson and P. Lindstr�om, A Parallel IntervalMethod Implementation for Global Optimization
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