有些例子表明收敛的速度是指数级的,但是并没有理论的证明
在该文中一类特殊的二元隐马尔可夫过程被证明和 cookie-cutter集有关
由此
二元隐马尔可夫过程熵率的收敛性可以由复杂性理论研究
熵率的收敛速度被证明为幂级数收敛于0
这一结论无论从理论上还是实践上来开
) Abstract: How fast does the entropy rate of a hidden Markov process converge to its theoretical value? Empirically, several examples have shown that the convergence is exponential, but there does not have a theoretical proof
In this paper, a special kind of binary hidden Markov processes (BHMPs) is shown to be related to cookie-cutter sets
As a result, the entropy rate of these BHMPs could be studied based on the theoretical results of cookie-cutter sets
It is proved that the estimated bias of entropy rate of such BHMPs decreases at least exponentially to zero
These conclusions are important in both theoretical and practical terms
Keywords: Binary hidden Markov process;convergence of entropy rate;cookie-cutter set 下载PDF阅读器 PDF全文下载: 初稿 ( 171 ) 作者简介: 通信联系人: 【收录情况】 中国科技论文在线: 陈双平
二元隐马尔可夫过程熵率的收敛性[EB/OL]
北京:中国科技论文在线
熵率收敛性
) 摘要: 隐马尔可夫过程熵率的收敛性有多快呢
cookie-cutter集 Shuangping Chen * ( Department of Computer Science, Zhuhai Campus, Jinan University
都具有重要意义
关键词: 二元隐马尔可夫过程
总览 评价 陈双平 * ( 暨南大学珠海校区计算机系
依据经验
[2010-01-05]
http://www
paper
edu
cn/releasepaper/content/201001-91